Národní úložiště šedé literatury Nalezeno 16 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Compactness of higher-order Sobolev embeddings
Slavíková, Lenka ; Pick, Luboš (vedoucí práce) ; Nekvinda, Aleš (oponent)
V předložené práci studujeme kompaktnost Sobolevových vnoření m-tého řádu na oblasti Ω ⊆ Rn vybavené pravděpodobnostní mírou ν a splňující jistou izoperi- metrickou nerovnost. Odvodíme podmínku na dvojici prostorů X(Ω, ν) a Y (Ω, ν) invariantních vůči nerostoucímu přerovnání, která zaručuje kompaktnost vnoření Sobolevova prostoru V m X(Ω, ν) do Y (Ω, ν). Tato podmínka je vyjádřena po- mocí kompaktnosti jistého operátoru na reprezentačních prostorech. Získaný výsledek poté využijeme k charakterizaci kompaktních Sobolevových vnoření na konkrétních prostorech s mírou, kterými jsou Johnovy oblasti, Maz'yovy třídy oblastí v eukleidovském prostoru a součinové pravděpodobnostní prostory, jejichž standardním příkladem je Gaussův prostor. 1
Prostory funkcí s necelými derivacemi na intervalu
Lopata, Jan ; Kaplický, Petr (vedoucí práce) ; Hencl, Stanislav (oponent)
V odborné literatuře se setkáváme s různými způsoby zavedení Sobolevova prostoru W1,1 na otevřeném a omezeném intervalu. V této práci je uvedeme do souvislosti. Ukážeme, že zúplnění množiny funkcí se spojitou první derivací, pro- stor funkcí se slabou derivací a prostor absolutně spojitých funkcí jsou izometricky izomorfní. Dále ukážeme, že Sobolevův prostor W1,∞ je izometricky izomorfní prostoru lipschitzovských funkcí. Ukážeme také několik triviálních i netriviálních vnoření pro Besovovy prostory. Nakonec se podíváme na otázku, zda jsou funkce z Besovova prostoru pro jisté parametry obsaženy v množině spojitých funkcí. 1
Measures of non-compactness of Sobolev embeddings
Bouchala, Ondřej ; Hencl, Stanislav (vedoucí práce)
Míra nekompaktnosti operátoru je definována pro libovolný spojitý operátor T : X Y mezi dvěma Banachovými prostory X a Y jako β(T) := inf { r > 0: T(BX) je možné pokrýt konečně mnoha koulemi o poloměru r } . Jednoduše se dá ukázat, že 0 ≤ β(T) ≤ ∥T∥ a že β(T) = 0, právě když je T kompaktní operátor. Ve svém článku můj vedoucí prof. Stanislav Hencl dokázal, že pro známé vnoření W k,p 0 (Ω) → Lp∗ (Ω), kde kp je menší než dimenze, platí, že jeho míra nekompaktnosti se rovná jeho normě. V této práci dokazujeme, že za jistých předpokladů je míra nekompakt- nosti vnoření jednoho prostoru funkcí do druhého rovna jeho normě. Toto tvrzení použijeme na zobecnění zmíněného výsledku pro případ Lorentzo- vých prostorů. Konkrétně ukážeme, že míra nekompaktnosti vnoření Wk 0 Lp,q (Ω) → Lp∗,q (Ω) je pro vhodná p a q rovna jeho normě. 1
Positioning of Orlicz space and optimality
Musil, Vít
Řešíme problém, kdy k danému Banachovu prostoru funkcí s normou invariantní vůči nerostoucímu přerovnání Y (Ω) existuje op- timální (největší) Orliczův prostor LA (Ω) splňující Sobolevovo vnoření Wm LA (Ω) ! Y (Ω). V práci předkládáme kompletní charakterizaci to- hoto problému pro třídu Marcinkiewiczových koncových prostorů a uka- zujeme některé důležité příklady.
Weighted inequalities and properties of operators and embeddings on function spaces
Slavíková, Lenka ; Pick, Luboš (vedoucí práce)
Tato disertační práce je věnována studiu nejrůznějších vlastností Banachových prostorů funkcí se zvláštním zřetelem k aplikacím v teorii Sobolevových prostorů a v harmonické analýze. Práce sestává ze čtyř článků. V prvním z nich zkoumá- me vnoření vyššího řádu prostorů Sobolevova typu vybudovaných nad Bana- chovými prostory funkcí s normou invariantní vůči nerostoucímu přerovnání. Mimo jiné ukážeme, že optimální Sobolevova vnoření vyššího řádu plynou z izoperimetrických nerovností. Ve druhém článku se zabýváme otázkou, kdy je výše zmíněný prostor Sobolevova typu Banachovou algebrou vzhledem k bodové- mu násobení funkcí. Dokážeme, že vnoření Sobolevova prostoru do prostoru esen- ciálně omezených funkcí je odpovědí na tuto otázku v mnoha standardních i ne- standardních případech. Třetí článek je věnován problému platnosti Lebesgueovy věty o derivování v kontextu Banachových prostorů funkcí s normou invariantní vůči nerostoucímu přerovnání. Nalezneme nutnou a postačující podmínku pro platnost této věty vyjádřenou pomocí konkavity jistého funkcionálu závisejícího na dané normě a poskytneme rovněž několik alternativních charakterizací zada- ných pomocí vlastností...
Measures of non-compactness of Sobolev embeddings
Bouchala, Ondřej ; Hencl, Stanislav (vedoucí práce)
Míra nekompaktnosti operátoru je definována pro libovolný spojitý operátor T : X Y mezi dvěma Banachovými prostory X a Y jako β(T) := inf { r > 0: T(BX) je možné pokrýt konečně mnoha koulemi o poloměru r } . Jednoduše se dá ukázat, že 0 ≤ β(T) ≤ ∥T∥ a že β(T) = 0, právě když je T kompaktní operátor. Ve svém článku můj vedoucí prof. Stanislav Hencl dokázal, že pro známé vnoření W k,p 0 (Ω) → Lp∗ (Ω), kde kp je menší než dimenze, platí, že jeho míra nekompaktnosti se rovná jeho normě. V této práci dokazujeme, že za jistých předpokladů je míra nekompakt- nosti vnoření jednoho prostoru funkcí do druhého rovna jeho normě. Toto tvrzení použijeme na zobecnění zmíněného výsledku pro případ Lorentzo- vých prostorů. Konkrétně ukážeme, že míra nekompaktnosti vnoření Wk 0 Lp,q (Ω) → Lp∗,q (Ω) je pro vhodná p a q rovna jeho normě. 1
Measures of non-compactness of Sobolev embeddings
Bouchala, Ondřej ; Hencl, Stanislav (vedoucí práce) ; Honzík, Petr (oponent)
Míra nekompaktnosti operátoru je definována pro libovolný spojitý operátor T : X Y mezi dvěma Banachovými prostory X a Y jako β(T) := inf { r > 0: T(BX) je možné pokrýt konečně mnoha koulemi o poloměru r } . Jednoduše se dá ukázat, že 0 ≤ β(T) ≤ ∥T∥ a že β(T) = 0, právě když je T kompaktní operátor. Ve svém článku můj vedoucí prof. Stanislav Hencl dokázal, že pro známé vnoření W k,p 0 (Ω) → Lp∗ (Ω), kde kp je menší než dimenze, platí, že jeho míra nekompaktnosti se rovná jeho normě. V této práci dokazujeme, že za jistých předpokladů je míra nekompakt- nosti vnoření jednoho prostoru funkcí do druhého rovna jeho normě. Toto tvrzení použijeme na zobecnění zmíněného výsledku pro případ Lorentzo- vých prostorů. Konkrétně ukážeme, že míra nekompaktnosti vnoření Wk 0 Lp,q (Ω) → Lp∗,q (Ω) je pro vhodná p a q rovna jeho normě. 1
Properties of Sobolev Mappings
Roskovec, Tomáš ; Hencl, Stanislav (vedoucí práce) ; Björn, Anders (oponent) ; Zürcher, Thomas (oponent)
V práci se zabýváme vlastnostmi Sobolevovských funkcí a zobrazení s důrazem na porušení některých jejich očekávaných vlastností. V první části studujeme Sobolevovo větu o vnoření, která udává vztah W1,p (Ω) ⊂ Lp∗ (Ω) definovaný parametrem p∗ (p, n, Ω). Na konkrétní konstrukci ukážeme, že pro zcela obecnou oblast tato závislost není coby funkce p hladká a dokonce ani spojitá. V druhé části se zabýváme klasickým Cesariho protipříkladem, spojitým zobrazením v W1,n ([−1, 1]n , Rn ) porušujícím Lusinovu (N) podmínku. Ukážeme konstrukci, že zobrazení těchto vlastností může být gradientem funkce. V třetí části zo- becníme Cesariho a také Ponomarevovu konstrukci pro Sobolevovské prostory s vyšší derivací W1,n ([−1, 1]n , Rn ) a tím charakterizujeme platnost Lusinovy (N) podmínky v těchto prostorech v závislosti na výši derivace, na p a na dimenzi. 1
Weighted inequalities and properties of operators and embeddings on function spaces
Slavíková, Lenka ; Pick, Luboš (vedoucí práce) ; Pérez, Carlos (oponent) ; Malý, Jan (oponent)
Tato disertační práce je věnována studiu nejrůznějších vlastností Banachových prostorů funkcí se zvláštním zřetelem k aplikacím v teorii Sobolevových prostorů a v harmonické analýze. Práce sestává ze čtyř článků. V prvním z nich zkoumá- me vnoření vyššího řádu prostorů Sobolevova typu vybudovaných nad Bana- chovými prostory funkcí s normou invariantní vůči nerostoucímu přerovnání. Mimo jiné ukážeme, že optimální Sobolevova vnoření vyššího řádu plynou z izoperimetrických nerovností. Ve druhém článku se zabýváme otázkou, kdy je výše zmíněný prostor Sobolevova typu Banachovou algebrou vzhledem k bodové- mu násobení funkcí. Dokážeme, že vnoření Sobolevova prostoru do prostoru esen- ciálně omezených funkcí je odpovědí na tuto otázku v mnoha standardních i ne- standardních případech. Třetí článek je věnován problému platnosti Lebesgueovy věty o derivování v kontextu Banachových prostorů funkcí s normou invariantní vůči nerostoucímu přerovnání. Nalezneme nutnou a postačující podmínku pro platnost této věty vyjádřenou pomocí konkavity jistého funkcionálu závisejícího na dané normě a poskytneme rovněž několik alternativních charakterizací zada- ných pomocí vlastností...
Sobolevovská zobrazení a Cantorovské protipříklady
Fiala, Martin ; Hencl, Stanislav (vedoucí práce) ; Vybíral, Jan (oponent)
Sobolevovská zobrazení a Cantorovské protipříklady Autor práce: Martin Fiala Vedoucí práce: doc. RNDr. Stanislav Hencl, Ph.D. Abstrakt: Cílem této práce je předvést jednu z obecných konstrukcí zobrazení, která lze užít pro tvorbu různých protipříkladů v teorii Sobolevovských zobrazení. Konstrukce je detailně popsána a následně je ukázáno její užití na řadě příkladů. Závěr práce je věnován mírnému zobecnění této konstrukce. 1

Národní úložiště šedé literatury : Nalezeno 16 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.